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Abstract. We employ OPE techniques within HQET to calculate the inclusive semileptonic decays of po-
larized Λb baryons. Lepton mass effects are included which enables us to also discuss rates into polarized
τ -leptons. We present explicit results for the longitudinal polarization of the τ in the Λb rest frame as
well as in the (τ−, ν̄τ ) c.m. frame. In both the Λb rest frame and in the (τ−, ν̄τ ) c.m. frame we make use
of novel calculational techniques which considerably simplify the calculations. The transverse polarization
components of the τ are calculated in the (τ−, ν̄τ ) c.m. frame. We delineate how to measure the full set
of 14 polarized and unpolarized structure functions of the decay process by angular correlation measure-
ments. A set of observables are identified that allow one to isolate the contributions of the two O(1/m2

b)
nonperturbative matrix elements Kb and εb.

1 Introduction

Large samples of the bottom baryon Λb have been pro-
duced on the Z0 at LEP and are expected to be pro-
duced in future colliders. Advances in microvertexing tech-
niques have allowed for efficient means of Λb identification.
For example, when LEP was running on the Z one had
≈ 2.2 × 105 bb̄ pairs per 106 Z-decays. Of these approx-
imately 10% go into Λb baryons of which again ≈ 20%
decay semileptonically (e, µ and τ). Thus one can expect
a sample of 4000 inclusive semileptonic Λb (or Λ̄b) decays
for every 106 Z-decays. Plans at the SLC call for alto-
gether 3 × 106 produced Z’s. The quality of the Λb data
from the SLC will even be better because its small beam
size provides for an excellent definition of the Λb produc-
tion vertex.

The Λb’s produced on the Z-peak are expected to be
quite strongly polarized [1]. This calls for a consideration
of polarization effects in the Λb decays which could be used
to determine the polarization of the Λb. Approximately
10% of the total (e+µ+τ) semileptonic decay sample have
a τ -lepton in the final state. The τ -lepton is sufficiently
heavy which necessitates the inclusion of lepton mass ef-
fects in the dynamical rate calculations, apart from pure
phase space effects. We will study also the polarization of
the τ -lepton which, because of mass effects, differs from
its naive ml = 0 limiting value. The τ -polarization can
be experimentally determined from its subsequent decay
distributions.

a Supported in part by the BMFT, FRG under contract
06MZ566

In this paper we present all the necessary tools to cal-
culate inclusive semileptonic decays of polarized Λb’s in-
cluding τ -lepton polarization effects and spin-spin, spin-
momentum and momentum-momentum correlation effects.
Our calculation makes use of the heavy quark effective the-
ory (HQET) and the operator product expansion (OPE)
method as applied to heavy hadron decays. There is some
overlap of our work with earlier results on inclusive Λb
decays in [2–8] and the more recent paper by M. Gremm,
G. Köpp and L.M. Sehgal on polarization effects in in-
clusive semileptonic Λb-decays [9]. At the technical level
we differ from the analysis of the above papers in that
we employ helicity techniques to derive compact forms
for the differential decay distributions including polariza-
tion effects. Also, by using suitable phase space variables,
the integration of the higher order terms in the operator
product expansion become much simplified, i.e. there are
no surface term contributions.

In Sect. II we list our results on the hadronic ma-
trix elements needed for the subsequent semileptonic rate
calculations. As the techniques of deriving the hadronic
matrix elements are quite standard by now we do not
dwell much on theoretical background but immediately
proceed to the final results which we list in terms of a set
of spin-dependent invariant structure functions. In Sect.
III the invariant structure functions are related to helicity
structure functions which determine the complete angu-
lar structure of the polarized decay distributions involv-
ing the three helicity angles of the decay process. We write
down the full differential decay distribution of polarized
Λb-decays into longitudinally polarized τ -leptons. We give
analytical and numerical results on decay distributions in-
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tegrated over phase space. In Sect. IV we discuss the case
of transversely polarized τ -leptons.

Section V is dedicated to a calculation of the longitu-
dinal polarization of the τ in the Λb rest frame as well as
of its azimuthally averaged transverse polarization compo-
nent in the plane spanned by the τ and the polarization
vector of the Λb. The calculation is considerably simplified
by extracting the rate as the absorptive part of the appro-
priate one-loop contribution to the τ̄Λb → τ̄Λb scattering
amplitude. Section VI contains our conclusions. More de-
tailed results have been collected in two Appendices. In
Appendix A we list results on q0-integrated helicity struc-
ture functions. In Appendix B we give fully integrated ana-
lytic results for the seven structure functions that describe
the angular decay structure of unpolarized Λb decays.

2 Hadronic matrix elements

The dynamics of the hadron-side transitions is embodied
in the hadronic tensor Wµν which is defined as

Wµν
j (q0, q2, s) = (2π)3

∑
X

δ4(p1 − q − px)

×〈Λb(p1, s)|Jµ†j |Xj(px)〉〈Xj(px)|Jνj |Λb(p1, s)〉 , (1)

where Jµj (j = c, u) is the hadronic current inducing b→ c
and b → u transitions. The hadron tensor is a function
of two kinematic variables which we choose as q0 and q2.
Note that we are not summing over the Λb-spin such that
the hadron tensor depends also on its spin four-vector s.
The structure of the hadron tensor can then be repre-
sented by an expansion along a standard set of covariants
[10] (v = p1/mΛb)

Wµν = −gµνW1 + vµvνW2 − iεµνρσvρqσW3

+qµqνW4 + (qµvν + vµqν)W5

+
[−q.s [−gµνG1 + vµvνG2 − iεµναβvαqβG3

+qµqνG4 + (qµvν + qνvµ)G5]
+(sµvν + sνvµ)G6 + (sµqν + sνqµ)G7

+iεµναβvαsβG8 + iεµναβqαsβG9
]

+(sµvν − sνvµ)G10 + (sµqν − sνqµ)G11

+(vµεναβγqαvβsγ + vνεµαβγqαvβsγ)G12

+(qµεναβγqαvβsγ + qνεµαβγqαvβsγ)G13 . (2)

The last four invariants G10, G11, G12 and G13 are so-
called T-odd invariants which are fed by CP-odd and/or
imaginary part contributions. They are zero for Standard
Model couplings when loop effects are neglected. They will
therefore be disregarded in the following. Note that the
invariants W4,W5, G4, G5, G7, G11 and G13 do not con-
tribute to inclusive semileptonic decays in the zero lepton
mass case. Since we are also considering decays involving
the massive τ -lepton we must keep the full set of invariants
implied by (2).

In order to compute the spin-independent structure
functionsW1, ...,W5 and the spin-dependent structure func-
tions G1, ..., G9 we resort to the well-known OPE tech-
niques in HQET. The requisite steps in this calculation

are so well documented in the literature [9–17] that we
can forgo a description of the intermediate steps and im-
mediately list the final result of the OPE analysis. The
hadron tensor is obtained as the absorptive part of the
forward matrix element (Wµν = − 1

π Im Tµν)

Tµν(q0, q2) = −i〈Λb(p1, s)|∫
d4x e−iq·xTJµ†(x)Jν(0)|Λb(p1, s)〉. (3)

The amplitude Tµν is decomposed into 14 invariant form-
factors Ti, Si analogous to the Wi, Gi in (2) and can be
computed by using HQET methods [9,11–13,10,14]. Keep-
ing terms up to 1/m2

b one obtains

T1 =
1

2∆0
(mb − v.q)(1 +Xb)

+
2mb

3
(Kb +Gb)

( −1
2∆0

+
q2 − (v.q)2

∆2
0

)
+
mb(Kb +Gb)

2∆0
− m2

bGb

3∆2
0

(mb − v.q),

T2 =
mb

∆0
(1 +Xb) +

2mb

3
(Kb +Gb)

(
1
∆0

+
2mbv.q

∆2
0

)
+
mb(Kb +Gb)

∆0
+

4m2
bKbv.q

3∆2
0

+
2m3

bGb

3∆2
0

,

T3 =
1

2∆0
(1 +Xb)− 2mb

3
(Kb +Gb)

mb − v.q

∆2
0

+
2m2

bKb

3∆2
0

− m2
bGb

3∆2
0
,

T4 =
4mb

3∆2
0
(Kb +Gb),

T5 =
−1
2∆0

(1 +Xb)− 2mb

3
(Kb +Gb)

2mb + v.q

∆2
0

+
m2
bGb

3∆2
0
,

S1 = −1 + εb
2∆0

− 5mb

3∆2
0
v.qKb +

4m2
bKb

3∆3
0

(q2 − (v.q)2) ,

S2 =
4m2

bKb

3∆2
0

,

S3 =
2mbKb

3∆2
0

,

S4 = 0 ,

S5 =
−2mbKb

3∆2
0

,

S6 = −mb(1 + εb)
2∆0

− 5mbKb

6∆0
− 5m2

b

3∆2
0
v.qKb

+
4m3

bKb

3∆3
0

(q2 − (v.q)2) ,

S7 =
1 + εb
2∆0

+
(2mb + 3v.q)mbKb

3∆2
0

−4m2
bKb

3∆3
0

(q2 − (v.q)2) ,

S8 =
mb(1 + εb)

2∆0
+
mbKb

6∆0
+

5m2
b

3∆2
0
v.qKb
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−4m3
bKb

3∆3
0

(q2 − (v.q)2) ,

S9 = −1 + εb
2∆0

− (2mb + 3v.q)mbKb

3∆2
0

+
4m2

bKb

3∆3
0

(q2 − (v.q)2) , (4)

where

Xb =
−2(mb − v.q)mb(Kb +Gb)

∆0

−8m2
bKb

3∆2
0

(q2 − (v.q)2) +
2m2

bKb

∆0
, (5)

We use the notation of [10] throughout the paper. Kb is
related to the mean kinetic energy of the heavy quark in
the Λb baryon

Kb = −
∑
s

〈Λb(p, s)|b̄v(x)
(iD)2

2m2
b

bv(x)|Λb(p, s)〉

=
µ2
π

2m2
b

≈ 0.013, (6)

where we used µ2
π ≈ 0.6 GeV2 [18] and mb = 4.8 GeV.

The spin-dependent contribution εb is defined by

〈Λb(p, s)|b̄γλγ5b|Λb(p, s)〉 = (1 + εb)sλ . (7)

with εb ≈ − 2
3Kb. An estimate of the spin-dependent pa-

rameter εb has been given in [19] with the result εb =
− 2

3Kb, based on an assumption that the contribution of
terms arising from double insertions of the chromomag-
netic operator can be neglected. A zero recoil sum rule
analysis gives the constraint εb ≤ − 2

3Kb [20] which puts
the estimate of [19] at the upper boundary of the con-
straint. We use the value of [19] keeping in mind that the
numerical value of εb could be reduced in more realistic
calculations.

In order to make our presentation as complete as pos-
sible we have retained the chromomagnetic contribution
proportional to Gb in (4) although it is zero for the Λb
system, i.e.

Gb :=
∑
s

〈Λb(p, s)|b̄v(x)
(−gFαβσαβ

4m2
b

)
bv(x)|Λb(p, s)〉

= 0 . (8)

The reason is that the general helicity formalism intro-
duced later on can also be applied to B meson and Ωb

baryon decays where Gb 6= 0.
The denominator factor ∆0 is given by

∆0 = (mbv − q)2 −m2
j + iε (9)

The imaginary parts of inverse powers of ∆0, which are
needed for obtaining the structure functions Wi, Gi, can
be obtained with the help of

Im
(

1
∆0

)
=

−π
2mb

δ

(
q0 −

(
−m2

j + q2 +m2
b

2mb

))
,

Im
(

1
∆2

0

)
=

−π
4m2

b

δ′
(
q0 −

(
−m2

j + q2 +m2
b

2mb

))
,

Im
(

1
∆3

0

)
=

−π
16m3

b

δ′′
(
q0 −

(
−m2

j + q2 +m2
b

2mb

))
.(10)

Various subsets of (4) have appeared in the literature be-
fore [9,10,16]. We have recalculated them and collected
them together for ease of reference.

3 Helicity structure functions
and angular decay distributions

The hadronic structure for the transitions Λb(s) → Xj is
fully specified by the absorptive parts of the 14 structure
functions listed in (4). In order to obtain the full decay dis-
tribution for the inclusive decay Λb(s) → Xj + l−(sl) + ν̄l
one needs to contract the hadronic tensor Wµν with the
known leptonic tensor Lµν . Traditionally the contraction
LµνW

µν is done in covariant fashion. Here we advocate
a different approach and use helicity techniques to write
down the relevant decay distributions. The advantage is
that the angular decay distributions involving helicity an-
gles are given by simple linear combinations of the helic-
ity structure functions. The use of helicity techniques to
describe angular decay distributions in exclusive semilep-
tonic decays is widespread by now [2–4] and is easily gen-
eralized to inclusive semileptonic decays.

Let us begin by writing down the relation between the
full spin-dependent set of 14 helicity structure functions
and the set of 14 invariant structure functions in (2). One
has

W++
++ = W1 − pW3 − pG1 + p2G3 −G8 − q0G9 ,

W−−
++ = W1 − pW3 + pG1 − p2G3 +G8 + q0G9 ,

W++
−− = W1 + pW3 − pG1 − p2G3 +G8 + q0G9 ,

W−−
−− = W1 + pW3 + pG1 + p2G3 −G8 − q0G9 ,

q2W++
tt = −q2W1 + q2

0W2 + q4W4 + 2q0q2W5

−p(−q2G1 + q2
0G2 + q4G4 + 2q0q2G5

−2q0G6 − 2q2G7) ,
q2W−−

tt = −q2W1 + q2
0W2 + q4W4 + 2q0q2W5

+p(−q2G1 + q2
0G2 + q4G4 + 2q0q2G5

−2q0G6 − 2q2G7) ,
q2W++

00 = q2W1 + p2W2 − pq2G1 − p3G2 + 2q0pG6 ,

q2W−−
00 = q2W1 + p2W2 + pq2G1 + p3G2 − 2q0pG6 ,

q2W++
0t = pq0W2 + pq2W5 − q0p

2G2 − q2p2G5

+(p2 + q2
0)G6 + q0q

2G7 ,

q2W−−
0t = pq0W2 + pq2W5 + q0p

2G2 + q2p2G5

−(p2 + q2
0)G6 − q0q

2G7 ,

W+−
0+ =

√
2/q2(−pG6 − q0G8 − q2G9) ,

W+−
−0 =

√
2/q2(pG6 − q0G8 − q2G9) ,

W+−
t+ =

√
2/q2(−q0G6 − q2G7 − pG8) ,
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Fig. 1. Definition of the polar angles Θ and ΘP and of the
azimuthal angle φ in the decay Λ̄b → X +W−(→ l−ν̄l) in the
Λb rest system. We specify a z-axis which we take to be along
pX . P denotes the polarization three-vector of the Λb

W+−
−t =

√
2/q2(q0G6 + q2G7 − pG8) . (11)

We denoted here p =
√
q2
0 − q2. The helicity structure

functions W
λΛbλ

′
Λb

λWλ′
W

are defined by

W
λΛbλ

′
Λb

λWλ′
W

= (2π)3
∑
X

δ4(p1 − q − px)〈Xj |Jµj |Λb, λΛb〉

×ε∗µ(λW )〈Λb, λ′Λb |Jν†j |Xj〉εν(λ′W ) . (12)

Here λΛb = ±1/2 is the helicity of the Λb and λW =
0,±1, t are the helicities of the virtual W -boson (spatial:
λW = 0,±1; temporal: λW = t). Note that there are no
zeroth order parton model and kinetic energy contribu-
tions to the structure functions W++

++ and W−−
−− because

of angular momentum conservation. We shall return to
this point later in this section when we discuss the con-
tribution of the spin-dependent matrix element εb. Note
that from (12) one has the hermiticity relation

W
λΛbλ

′
Λb

∗
λWλ′

W
= W

λ′
Λb

λΛb
λ′
W
λW

. (13)

Since the helicity structure functions are real in our
case one can drop the complex conjugation sign in (13).
The helicity structure functions are defined in the Λb rest
system. We therefore need to specify a z-axis which we
take to be along pX (see Fig. 1).

As noted before the full angular decay distribution of
Λb(s) → Xj + l−(sl) + ν̄l including all polarization ef-
fects is completely determined by the set of 14 helicity
structure functions. The necessary manipulations involv-
ing Wigner’s DJ

mm′ functions are standard and well doc-
umented in the literature [21,22] (see also Sect. IV). Here
we closely follow the presentation of [5–7]. For example,
for the five-fold decay distribution in q0, q

2, cosΘ, cosΘP

and φ into negative (dΓ−) and positive (dΓ+) helicity
leptons we obtain?

dΓ−

dq0dq2d cosΘd cosΘPdφ

=
2G2|Vbj |2(q2 −m2

l )
2
√
q2
0 − q2

3(2π)4q2

? Similar decay distributions have been written down in
[23], where the O(αs) corrections to unpolarized t→ b decays
were evaluated.

[ (
ρ++

(
W++

−− +W++
++

)
+ρ−−

(
W−−

−− +W−−
++

)) 3
8
(1 + cos2 Θ)

+
(
ρ++W

++
00 + ρ−−W−−

00

) 3
4

sin2 Θ

+
3
4
(
ρ++

(
W++

++ −W++
−−

)
+ρ−−

(
W−−

++ −W−−
−−

))
cosΘ

− 3
2
√

2
ρ+−

(
W+−

−0 +W+−
0+

)
sinΘ cosφ

+
3

4
√

2
ρ+−

(
W+−

−0 −W+−
0+

)
sin 2Θ cosφ

]
(14)

dΓ+

dq0dq2d cosΘd cosΘPdφ

=
2G2|Vbj |2(q2 −m2

l )
2
√
q2
0 − q2

3(2π)4q2

m2
l

2q2

[ (
ρ++

(
W++

−− +W++
++

)
+ρ−−

(
W−−

−− +W−−
++

)) 3
4

sin2 Θ

+
(
ρ++W

++
00 + ρ−−W−−

00

) 3
2

cos2 Θ

+
3
2
(
ρ++W

++
tt + ρ−−W−−

tt

)
+3

(
ρ++W

++
0t + ρ−−W−−

0t

)
cosΘ

−3
2

√
2ρ+−

(
W+−

−t −W+−
t+

)
sinΘ cosφ

−3
4

√
2ρ+−

(
W+−

−0 −W+−
0+

)
sin 2Θ cosφ

]
(15)

For Λc → Xs + l+ + νl decays one has to effect the re-
placement dΓ∓ ↔ dΓ± and one has to change the signs
of the contributions proportional to cosΘ and sinΘ cosφ
in (14). The differential rate into unpolarized leptons is
simply dΓ++dΓ−. The polar angles Θ and ΘP and the
azimuthal angle φ are defined in Fig. 1. We have rotated
the density matrix of the Λb to the z-axis such that one
has

ρΛb(cosΘP ) =
1
2

(
1 + P cosΘP P sinΘP

P sinΘP 1− P cosΘP

)
.(16)

Note that for Λb’s from Z-decays one expects that the Λb’s
are longitudinally polarized with backward polarization.
Thus, for Λb’s from Z-decays, the direction of P in Fig. 1
coincides with the boost direction that brings Λb to rest
(P ≥ 0).

The longitudinal polarization of the τ -lepton is given
by

P l
τ =

dΓ+ − dΓ−

dΓ+ + dΓ− (17)

We emphasize that the longitudinal polarization of the
τ calculated from (14, 15) and (17) refers to the (τ, ν̄τ )
c.m. frame which differs from the longitudinal polariza-
tion of the τ in the Λb rest system as calculated e.g. in
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[9,17]. A slight adaptation of the lepton-side density ma-
trix elements in (14, 15) as described in [8] will yield the
longitudinal polarization in the Λb rest system. Put in a
different language the two respective polarizations are re-
lated to one another by a Wigner rotation (see e.g. [24]).
A direct computation of the longitudinal polarization of
the τ in the Λb rest frame including correlation effects will
be presented in Sect. V.

The quasi three-body decay Λb(s) → Xj + l− + ν̄l
is described by three kinematic invariants. A particularly
convenient choice is the one used in (14, 15) in terms of
q0, q

2 and cosΘ. Working in (q0, q2, cosΘ) phase space has
big technical advantages as can be seen in the following.
The integration over cosΘ is trivial. The integration over
q0 is almost trivial as can be seen by the following reason-
ing. The leading order parton model or free quark decay
contributions are proportional to the δ-function and the

q0-integration amounts to the substitution q0 = m2
b−m2

j+q
2

2mb

in these terms. The corrections to the parton model contri-
butions involve derivatives of the δ-function. Using partial
integration the derivatives can easily be shifted to the in-
tegrand functions without encountering surface term con-
tributions because, to the requisite order in 1/mb, the two-
dimensional parton phase space never touches the bound-
ary of the three-dimensional particle phase space, except
at maximal q2 and q0 where the integration measure is
zero. The only nontrivial phase-space integration that re-
mains to be done is with regard to q2.

If desired, the transformation to the usual (q0, q2, El)
set of variables can be done with the help of the relation

cosΘ =
q0(q2 +m2

l )− 2q2El√
q2
0 − q2(q2 −m2

l )
. (18)

However, as can be easily appreciated by substituting (18)
in the differential rate (14, 15), the integration of the cor-
responding differential rate function is more cumbersome
for the following two reasons. First, when doing the q0-
integration, one has to carefully consider the contributions
from the surface terms induced by the derivatives of the
δ-function from the OPE expansion (see (10)). These may
lead to the appearance of spurious singularities when cal-
culating polarization type observables [25,9]. Second, one
remains with two nontrivial (El and q2) integrations, apart
from having to carefully consider surface term contribu-
tions when doing the q0-integration.

Returning to the differential rate (14, 15) one first
does the q0-integration which, after integration by parts,
amounts to a mere substitution as noted before. The re-
sults of the q0-integration are listed in Appendix A. Next
one integrates over q2 in the limits m2

l ≤ q2 ≤ (m1−m2)2.
Numerical and analytical results of the q2-integration can
be found in Tables 1 and 2 and in Appendix B.

We use in the Tables 1, 2 the following numerical val-
ues: mτ = 1.777 GeV, mc = 1.451 GeV, mb = 4.808 GeV.
Kb is given by Kb = µ2

π/(2m
2
b) with µ2

π = 0.6 GeV2 and
for εb we adopt the value εb = −2Kb/3 as explained above.
The values in brackets show the free quark decay (FQD)
results.

Table 1. Numerical values for polarized and unpolarized helic-
ity structure functions into negative helicity leptons. Column
2: b → c, l = τ ; column 3: b → c, l = e (me = 0); column 4:
b→ u (mu = 0), l = τ ; column 5: b→ u, l = e (me = 0)

b→ c b→ u
η = m2

τ/m
2
b η = 0 η = m2

τ/m
2
b η = 0

Γ̂−U 0.0389 0.177 0.133 0.352
(0.0376) (0.172) (0.124) (0.333)

Γ̂−L 0.0330 0.332 0.124 0.635
(0.0352) (0.344) (0.136) (0.666)

Γ̂−F –0.0185 –0.105 –0.093 –0.282
(–0.0208) (–0.112) (–0.124) (–0.333)

Γ̂P−
U 0.0183 0.104 0.092 0.279

(0.0208) (0.112) (0.124) (0.333)
Γ̂P−
L –0.0282 –0.322 –0.116 –0.629

(–0.0306) (–0.331) (–0.136) (–0.666)
Γ̂P−
F –0.0385 –0.176 –0.132 –0.349

(–0.0376) (–0.172) (–0.124) (–0.333)
Γ̂P−
I –0.0397 –0.208 –0.123 –0.418

(–0.0349) (–0.213) (–0.128) (–0.431)
Γ̂P−
A –0.0239 –0.179 –0.103 –0.390

(–0.0263) (–0.186) (–0.128) (–0.431)

Table 2. Numerical values for polarized and unpolarized helic-
ity structure functions into positive helicity τ -leptons for b→ c
and b→ u transitions. Parameter values as in Table 1

b→ c b→ u

Γ̂+
U 0.0081 0.0198

(0.0079) (0.0186)
Γ̂+
L 0.0076 0.0218

(0.0080) (0.0234)
Γ̂+
S 0.0079 0.0231

(0.0080) (0.0234)
Γ̂+
SL 0.0066 0.0210

(0.0072) (0.0234)
Γ̂P+
U 0.0041 0.0154

(0.0046) (0.0186)
Γ̂P+
L -0.0067 -0.0213

(-0.0072) (-0.0234)
Γ̂P+
S -0.0066 -0.0208

(-0.0072) (-0.0234)
Γ̂P+
SL -0.0077 -0.0222

(-0.0080) (-0.0234)
Γ̂P+
ST -0.0077 -0.0209

(-0.0076) (-0.0205)
Γ̂P+
A -0.0055 -0.0181

(-0.0060) (-0.0205)

In order to simplify our notation we introduce a set of
unpolarized and polarized reduced differential rate func-
tions dΓ̂−

i and dΓ̂P−
i , respectively, for the decays into

negative helicity leptons. We define scaled variables q̂2 =
q2/m2

b , q̂0 = q0/mb, ρ = m2
j/m

2
b and η = m2

τ/m
2
b and
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write

dΓ̂ (P )−
U

dq̂2 = 16
(q̂2 − η)2

q̂2

×I(W++
++ +W++

−− + (−)(W−−
++ +W−−

−− ))

dΓ̂ (P )−
L

dq̂2 = 16
(q̂2 − η)2

q̂2 I(W++
00 + (−)W−−

00 )

dΓ̂ (P )−
F

dq̂2 = 16
(q̂2 − η)2

q̂2

×I(W++
++ −W++

−− + (−)(W−−
++ −W−−

−− ))

dΓ̂P−
I

dq̂2 = 16
(q̂2 − η)2

q̂2 I(W+−
−0 +W+−

0+ )

dΓ̂P−
A

dq̂2 = 16
(q̂2 − η)2

q̂2 I(W+−
−0 −W+−

0+ ) (19)

where dΓ̂ (P )−
U stands for either dΓ̂−

U or dΓ̂P−
U etc. with

the corresponding signs specified on the r.h.s. of (19). Ac-
cordingly we define reduced differential rate functions for
decays into positive helicity leptons.

dΓ̂ (P )+
U

dq̂2 =
η

2q̂2

dΓ̂ (P )−
U

dq̂2

dΓ̂ (P )+
L

dq̂2 =
η

2q̂2

dΓ̂ (P )−
L

dq̂2

dΓ̂ (P )+
S

dq̂2 = 16
η

2q̂2

(q̂2 − η)2

q̂2 I(W++
tt + (−)W−−

tt )

dΓ̂ (P )+
SL

dq̂2 = 16
η

2q̂2

(q̂2 − η)2

q̂2 I(W++
0t + (−)W−−

0t )

dΓ̂P+
ST

dq̂2 = 16
η

2q̂2

(q̂2 − η)2

q̂2 I(W+−
−t −W+−

t+ )

dΓ̂P+
A

dq̂2 =
η

2q̂2

dΓ̂P−
A

dq̂2 (20)

Note that the structure function combination I(W+−
−t +

W+−
t+ ) does not appear in (19) and (20). This combination

can only be measured through the transverse spin compo-
nents of the τ -lepton as discussed in the next section. The
differential rate into negative helicity leptons can then be
written as

dΓ−

dq̂2d cosΘd cosΘPdφ
=

Γb
4π

×[
3
8

(
dΓ̂−

U

dq̂2 + P cosΘP
dΓ̂P−

U

dq̂2

)
(1 + cos2 Θ)

+
3
4

(
dΓ̂−

L

dq̂2 + P cosΘP
dΓ̂P−

L

dq̂2

)
sin2 Θ

+
3
4

(
dΓ̂−

F

dq̂2 + P cosΘP
dΓ̂P−

F

dq̂2

)
cosΘ

+
3

2
√

2
dΓ̂P−

I

dq̂2 P sinΘP sinΘ cosφ

− 3
4
√

2
dΓ̂P−

A

dq̂2 P sinΘP sin 2Θ cosφ

]
(21)

where

Γb =
|Vbj |2G2

Fm
5
b

192π3 . (22)

For the rate into positive helicity leptons we have

dΓ+

dq̂2d cosΘd cosΘPdφ
=

Γb
4π

×[
3
4

(
dΓ̂+

U

dq̂2 + P cosΘP
dΓ̂P+

U

dq̂2

)
sin2 Θ

+
3
2

(
dΓ̂+

L

dq̂2 + P cosΘP
dΓ̂P+

L

dq̂2

)
cos2 Θ

+
3
2

(
dΓ̂+

S

dq̂2 + P cosΘP
dΓ̂P+

S

dq̂2

)

+3

(
dΓ̂+

SL

dq̂2 + P cosΘP
dΓ̂P+

SL

dq̂2

)
cosΘ

−3
2

√
2
dΓ̂P+

ST

dq̂2 P sinΘP sinΘ cosφ

−3
4

√
2
dΓ̂P+

A

dq̂2 P sinΘP sin 2Θ cosφ

]
(23)

For quick reference we shall adopt a generic labelling for
the various helicity structure functions, namely we write
U (P )− for dΓ (P )−

U /dq̂2, etc. An inspection of the q2 depen-
dence of the helicity structure functions shows that the
structure functions U (P )−, L(P )−, F (P )−, U (P )+, L(P )+,
S(P )+ and SL(P )+ can be integrated analytically. In con-
trast to this, the integrations of the structure functions
I(P )−, A(P )−, ST (P )+ and A(P )+ lead to incomplete ellip-
tic functions and will therefore be performed numerically.

In Appendix B we list analytic results for the totally
integrated unpolarized structure functions U−, L−, F−,
U+, L+ and S+ as well as for the total rate function pro-
portional to (U− +U+ +L− +L+ + 3S+). Numerical re-
sults are listed in Tables 1 and 2, where we have used the
following set of input values: mb = 4.8 GeV, mc = 1.45
GeV, mu = 0 GeV, mτ = 1.777 GeV, Kb = µ2

π/(2m
2
b),

µ2
π = 0.6 GeV2 and εb = −2Kb/3. In order to assess the

importance of the nonperturbative contributions we also
list the zeroth order parton model values (Kb = εb = 0) in
brackets. Judging from the numerical entries in Tables 1
and 2 the effect of the nonperturbative contributions can
go both ways, i.e. depending on the particular structure
function, they can enhance or decrease the parton model
results. The nonperturbative contributions are generally
small, at the few percent level. Notable are the structure
functions UP−, AP−, SL+, UP+ and LP+ where the non-
perturbative contributions exceed 10%.

Fully integrated values of the longitudinal polarization
of the τ can easily be constructed in analogy to (17). It
is also evident that there are no transitions into positive
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helicities for ml = 0 which explains why Table 2 has only
two columns.

The structure function combinations (U− + FP− ±
(UP− + F−)) are of particular interest since they are di-
rectly proportional to the nonperturbative spin parame-
ter εb. They receive contributions from the helicity ±3/2
configurations, which are neither populated by the parton
model contribution nor by the spin neutral kinetic energy
term Kb. In fact, for the rate combinations (U− + FP−)
and (UP− + F−) one finds

Γ̂−
U + Γ̂P−

F = −εbΓ̂−
U (Kb = 0)

= −εb
[√

R

3
(1− 7η − 7η2 + η3 − 7ρ+ 12ηρ

−7η2ρ− 7ρ2 − 7ηρ2 + ρ3) (24)

+8

[
ρ2(η2 − 1) ln

(
1− η + ρ−√R

2
√
ρ

)

+η2(ρ2 − 1) ln

(
1 + η − ρ−√R

2
√
η

)]]

and

Γ̂P−
U + Γ̂−

F = −εbΓ̂−
F (Kb = 0)

= −εb
[
(−1 + η + 2

√
ρ− ρ)

×(1− 7η − 7η2 + η3 + 2
√
ρ− 12η

√
ρ

−2η2√ρ− 17ρ+ 38ηρ− 7η2ρ+ 28
√
ρ
3

−12η
√
ρ
3 − 17ρ2 − 7ηρ2 + 2

√
ρ
5 + ρ3)/3

+4η2(1− ρ)2 ln
(

η

(1−√ρ)2
)]

(25)

where the analytical results on the r.h.s. of (24) and (25)
can be obtained from the closed form expressions for Γ̂−

U

and Γ̂−
F in Appendix B by setting Kb = 0.

Numerically one has

Γ̂−
U + Γ̂P−

F = −0.0376 · εb
Γ̂P−
U + Γ̂−

F = 0.0208 · εb (26)

It is clear that the contribution of Kb could be ex-
tracted from taking appropriate linear combinations of the
fully integrated structure functions listed in Appendix B.
Since the coefficients needed in this extraction involve high
powers of the masses in the process, which are uncertain,
it would be desirable to find an observable directly propor-
tional to Kb. Such an observable appears in the measure-
ment of the transverse polarization of the τ as discussed
in the next section.

4 Transverse polarization of the τ -Lepton

In this section we present results on the transverse po-
larization components of the τ -lepton in the (τ, ν̄τ ) c.m.

frame. The two transverse components are conventionally
divided into the transverse perpendicular component in
the lepton-hadron plane and the transverse normal com-
ponent out of the lepton-hadron plane. The latter compo-
nent is not affected by the boost from the Λb rest frame to
the (τ, ν̄τ ) c.m. frame and, after the appropriate integra-
tions, can therefore be compared with the corresponding
calculation done in the Λb rest frame in [9].

The 2 × 2 density matrix of the τ -lepton can be ob-
tained from the master formula

dΓλlλ′
l

dq0dq2d cosΘd cosΘPdφ
(27)

=
2G2|Vbj |2(q2 −m2

τ )
√
q2
0 − q2

3(2π)4q2 {W (Θ,φ,ΘP )}λlλ′
l
,

where [2]

{W (Θ,φ,ΘP )}λlλ′
l

=
3
16

∑
m,m′,J,J ′,λb,λ′

b

[
(−1)J+J ′

hλl 1
2
h∗λ′

l
1
2
e−i(m−m′)φ

·dJm,λl− 1
2
(π −Θ)dJ

′
m′,λ′

l
− 1

2
(π −Θ)Wλbλ

′
b

mm′ ρλbλ′
b
(ΘP )

]
.

(28)

The helicity amplitudes hλl 1
2

(λl = ± 1
2 ) for the decay

W−
off−shell → τ− + ν̄τ appearing in the master formula

are given by [4]

h− 1
2

1
2

=
√

8(q2 −m2
τ ) = 2

√
2mb

√
q̂2 − η

h 1
2

1
2

=

√
m2
τ

2q2h− 1
2

1
2

=
√

η

2q̂2h− 1
2

1
2

. (29)

The diagonal elements of the density matrix {W}λlλ′
l
have

already been written down in the main text. Here we list
the nondiagonal density matrix element relevant for the
transverse polarization components of the τ .

For the unnormalized transverse perpendicular com-
ponent of the polarization vector one needs to calculate
{W}x = {W}+− + {W}−+. One has

{W}x = {W (Θ,φ,ΘP )}+− + {W (Θ,φ,ΘP )}−+

=
mτ√
2q2

(q2 −m2
l )[

3
2
√

2
(ρ++(W++

++ −W++
−− )

+ρ−−(W−−
++ −W−−

−− )) sinΘ

− 3
4
√

2
(ρ++(W++

++ +W++
−− − 2W++

00 )

+ρ−−(W−−
++ +W−−

−− − 2W−−
00 )) sin 2Θ

+
3√
2
(ρ++W

++
0t + ρ−−W−−

0t ) sinΘ

−3
2
ρ+−(W+−

0+ −W+−
−0 ) cos 2Θ cosφ
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−3
2
ρ+−(W+−

0+ +W+−
−0 +W+−

t+ −W+−
−t ) cosΘ

cosφ− 3
2
ρ+−(W+−

t+ +W+−
−t ) cosφ

]
(30)

Note that the 14th structure function combination (W+−
t+

+W+−
−t ) that was missing from the rate expressions in the

main text makes its first appearance in the transverse nor-
mal polarization. As (30) shows, Λb-polarization as well as
a determination of the τ -lepton’s transverse polarization
is necessary for a determination of the complete set of 14
structure functions.

The unnormalized transverse normal component is
given by the combination i(W+− −W−+). One obtains

{W}y = i({W (Θ,φ,ΘP )}+− − {W (Θ,φ,ΘP )}−+)

=
mτ√
2q2

(q2 −m2
τ )

×
[
+

3
2
ρ+−(W+−

0+ +W+−
−0 +W+−

t+ −W+−
−t ) sinφ

+
3
2
ρ+−(W+−

0+ −W+−
−0 +W+−

t+ +W+−
−t ) cosΘ sinφ

]
(31)

Note again the contribution from the 14th structure func-
tion combination (W+−

t+ + W+−
−t ). It is quite remarkable

that the two combinations of helicity structure functions
appearing in the transverse normal polarization of the τ in
(31) can be seen to be entirely determined by the nonper-
turbative Kb contribution. We have no simple explanation
of this fact.

The q0-integration of the relevant density matrix ele-
ments (27) can easily be done as described in the main
text. In fact, the relevant q0-integration of the 14th struc-
ture function combination is listed in Appendix A. The
remaining q2-integration is then done numerically. The
numerical result is presented for the case b → c using
the same numerical values as in Sect. III. We obtain

dΓ x

d cosΘd cosΘPdφ

=
Γb
4π

[−0.03777 sinΘ + 0.00725 sin 2Θ

−P cosΘP (0.01519 sinΘ + 0.01907 sin 2Θ)
+P sinΘP cosφ(0.01682− 0.00091 cosΘ
+0.01714 cos 2Θ)] (32)

dΓ y

d cosΘd cosΘPdφ

=
Γb
4π

(+0.000908 + 0.000323 cosΘ)P sinΘP sinφ

(33)

The transverse perpendicular polarization is dominated
by the zeroth order parton contribution with angular co-
efficients comparable to the entries in Tables 1 and 2. The
transverse normal angular coefficients are quite small as
expected since they are proportional to Kb.

As mentioned before the transverse normal polariza-
tion is not affected by the boost from the lab frame to the
(τ−ν̄τ ) c.m. frame. In order to compare our results with
the corresponding results in [9] we integrate the transverse
normal polarization with respect to cosΘ and cosΘP to
obtain

dΓ y

dq̂2dφ
= +

Γb
2π

12πP
(q̂2 − η)2

q̂2

√
η

2q̂2 (34)

×I(W+−
0+ +W+−

−0 +W+−
t+ −W+−

−t ) sinφ

As noted above, the linear combination I(W+−
0+ +W+−

−0 +
W+−

t+ −W+−
−t ) is proportional to Kb only and has no zeroth

order partonic contribution. The q̂2-integration is easily
done and one finds

dΓ y

dφ
=

Γb
2π

PA sinφ (35)

where

A = −2πKb
√
η

[√
R(−2− 5η + η2 − 5ρ+ ρ2 + 10ηρ)/3

−4η(1− 2ρ+ ηρ+ ρ2) ln

(
1 + η − ρ−√R

2
√
η

)

−4ρ(1− 2η + ηρ+ η2) ln

(
1− η + ρ−√R

2
√
ρ

)]
(36)

This result agrees with the result in [9] when their cor-
responding y-distribution is integrated with respect to y.
Numerically one has

A = +0.11Kb (37)

The results on the τ polarization discussed in the last
two sections refer to the (τ, ν̄τ ) rest frame which, because
of the elusiveness of the neutrino ν̄τ , may not always be
easy to construct. For some applications it may be prefer-
able to avail of the longitudinal polarization of the τ in
the Λb rest frame. This is the subject of the next section.

5 Polarization correlations
in the Λb rest frame

In this section we determine the polarization of the τ in
the Λb rest frame using a calculational technique originally
proposed in [26] which involves an averaging over the az-
imuthal angle φ (see Fig. 1). In this way we determine the
polarization components of the τ in the plane spanned by
the τ and the polarization vector of the Λb.

The method of [26] is based on applying the unitarity
relation to the amplitude for forward τ̄Λb → τ̄Λb scatter-
ing (see Fig. 2)

T (s) = (38)

i〈Λb(v, s)τ̄(pτ )|
∫

dxTH†
W (x)HW (0)|Λb(v, s)τ̄(pτ )〉 ,
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p

b

τ

b 

m  v + k - q

pb 

p  - qτ

p b= m  v + k

pτ

Fig. 2. Lowest-order graph contributing to the forward scat-
tering amplitude T (s)

where

HW = 2
√

2VjbGF [j̄γµPLb][ēγµPLνe] (39)

(PL =
1
2
(1− γ5))

is the interaction Hamiltonian responsible for the semilep-
tonic decay b→ jτ−ν̄τ and s = (mΛbv+pτ )2. By inserting
a complete set of states in (38) one obtains

Im T (s) =
1
2

∑
Xj ,ντ

∫
dµ(Xj)dµ(ντ ) (40)

(2π)4δ4(mΛbv + pτ − pXj − pντ )

× |〈Xj ν̄τ |HW (0)|Λb(v, s)τ̄(pτ )〉|2 .

The phase-space volume element is dµ = d3p
(2π)32E .

Comparing (40) with the inclusive semileptonic decay
rate

dΓ = |〈Xj ν̄τ (pντ )τ(pτ )|HW |Λb(v, s)〉|2
(2π)4δ4(mΛbv − pτ − pXj

− pντ )dµ(Xj)dµ(ντ )dµ(τ)
(41)

one obtains the final formula relating (38) to quantities of
experimental interest:

dΓ =
1

(2π)3
|pτ |dEτdΩτ Im T (s) . (42)

Our problem is thus reduced to computing the function
Im T (s). This can be done with the help of an operator-
product expansion combined with the heavy mass expan-
sion as discussed in Sect. II. First the heavy hadron is re-
placed with a heavy quark with momentum pb = mbv+k.
From the 1-loop diagram in Fig. 3 one reads off the lowest-
order expression for T (s)

T (s) = 8G2
F |Vjb|2 [ū(pτ )γµγαγνPLu(pτ )]

× [ū(v)γνγβγµPLu(v)
]
Iαβ(k) (43)

where we have defined

Iαβ(k) = (44)∫
dnq

(2π)n
(pτ − q)α(mbv + k − q)β

[(pτ − q)2 + iε][(mbv + k − q)2 −m2
c + iε]

.

We will be interested in polarized τ leptons in the fi-
nal state. Thus the leptonic amplitude in (43) should be
replaced by

ū(pτ )γµγαγνPLu(pτ ) → (45)

Tr
{

1
2mτ

( 6pτ +mτ )
1
2
(1 + γ5 6sτ )γµγαγνPL

}
,

with sτ the spin vector of the τ lepton.
The integral Iαβ(k) in (44) can be calculated by com-

bining the denominators with a Feynman parameter x.
The result is a complex function with an imaginary part
given by

1
2π

Im Iαβ(k) (46)

=
1

(4π)2

∫ 1

0
dx
{1

2
gαβs− x(1− x)

×[mbv + k − pτ ]α[mbv + k − pτ ]β
}
θ(x1 − x)

where

s = x
{−m2

τ (1− x) +m2
c − (mbv + k)2(1− x) (47)

+2(1− x)pτ · (mbv + k)} .
In (46) we have denoted x1 the root of the equation s(x1)
= 0. It is given by

x1 = 1− ρ

(1 + η − y)

(
1 +

2k̃ · (v − p̃τ ) + k̃2

1 + η − y

) (48)

= x0 +
1− x0

1 + η − y

×
(

2k̃ · (v − p̃τ ) + k̃2 − 4[k̃ · (v − p̃τ )]2

1 + η − y
+ · · ·

)
,

where x0 = 1−ρ/(1+η−y) is the value of x1 for k = 0. We
have introduced reduced momenta k̃ = k/mb, p̃τ = pτ/mb

and have expanded in powers of k̃ up to second order.
The integration in (46) can easily be performed with

the result

Im Iαβ(k) =
1
8π

{
1
4
ρx2

1

+
1
2

(
x2

1

2
− x3

1

3

)[
−η − (v + k̃)2 + 2p̃τ · (v + k̃)

]}
gαβ

− 1
8π

(
x2

1

2
− x3

1

3

)
(v + k̃ − p̃τ )α(v + k̃ − p̃τ )β , (49)

where x1 has to be replaced with the expanded form of
(48).

In physical applications we are interested in heavy
hadron decay, rather than free heavy quark decay. One
can obtain the corresponding scattering amplitude T (s)
by replacing the hadronic spinor expression in (43) with
expectation values of the appropriate operators

ū(v)f(k̃α)u(v) → 〈Λb(v, s)|b̄f
(
iDα

mb

)
b|Λb(v, s)〉 . (50)
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These matrix elements can in turn be expanded in pow-
ers of 1/mb with the help of heavy quark effective theory
(HQET) methods as discussed earlier. Referring to [13,10]
for calculational details, we only give the final substitution
rules needed for computing Im T (s).

a) terms of order k̃0

γµ → vµ (51)
γµγ5 → sµ(1 + εb) (52)

b) terms of order k̃1

k̃µγν → 1
3
Kb(−2gµν + 5vµvν) (53)

k̃µγνγ5 → Kb(vµsν +
2
3
vνsµ) (54)

c) terms of order k̃2

k̃µk̃νγα → −2
3
Kb(gµν − vµvν)vα (55)

k̃µk̃νγαγ5 → −2
3
Kb(gµν − vµvν)sα (56)

It is now a simple matter to combine (48,49) and (51-
56) into (42) and extract the decay rate. It can conve-
niently be written by splitting the rate into two terms

dΓ = dΓ + dΓ p =
1
2

(dΓ (sτ ) + dΓ (−sτ )) (57)

+
1
2

(dΓ (sτ )− dΓ (−sτ )) .
dΓ and dΓ p represent the decay rates into unpolarized
and polarized leptons. For the unpolarized rate we obtain

1
Γb

dΓ
dyd cos θτ

=
√
y2 − 4η (A(y) + (p̃τ · s)B(y)) ,(58)

where

A(y) = x2
0(−3y2 + 6y(1 + η)− 12η) (59)

+x3
0(y

2 − 3y(1 + η) + 8η)

+Kb

{
2[(1 + η)2 − y2]

−4x0[y2 − y(1 + η) + 2(1 + η2)]
+x2

0[4y
2 − 8y(1 + η) + 16η + 10(1 + η2)]

+x3
0[−

4
3
y2 + 4y(1 + η)− 32

3
η − 4(1 + η2)]

−4
(1− η)2(1 + η)(1− x0)2(1− 3x0)

1 + η − y

+2
(1− η)4(1− x0)2(1− 4x0)

(1 + η − y)2
}

B(y) =
{

(1 + εb)[6x2
0(y − 2η)− 2x3

0(1 + y − 3η)

+Kb [4(y + 2)− 8x0(2 + η − y)

+8x2
0(1 + 2η − y) +

8
3
x3

0(y − 3η)

−4
(1− η)(1− x0)2[3 + η − 2x0(η + 2)]

1 + η − y

+4
(1− η)3(1− x0)2(1− 4x0)

(1 + η − y)2

]}
.

We have defined θτ as the angle between the Λb spin and
the τ lepton momentum direction. For the decay rate into
polarized leptons dΓ p we obtain

2
1
Γb

dΓ p

dyd cos θτ
(60)

=
√
y2 − 4η

√
η {(v · sτ )(p̃τ · s)Ap(y)

+(v · sτ )Bp(y) + (s · sτ )Cp(y)} , (61)

where

Ap(y) = −24(1 + εb)
(
x2

0

2
− x3

0

3

)
(62)

−4Kb

[
2 + 2x0 − 5x2

0 +
8
3
x3

0

−2
(1 + η)(1− x0)2(2− x0)

1 + η − y

+2
(1− η)2(1− x0)2(1− 4x0)

(1 + η − y)2

]
Bp(y) = −6x2

0(2− y) + 2x3
0(3− y − η) (63)

−4Kb

[
− y − 2η + 2x0(1 + 2η − y)

+2x2
0(−2− η + y) +

2
3
x3

0(3− y)

+
(1− η)(1− x0)2[−1− 3η + 2x0(1 + 2η)]

1 + η − y

+
(1− η)3(1− x0)2(1− 4x0)

(1 + η − y)2

]
Cp(y) = 2x3

0(1 + εb)(1 + η − y) (64)

−2Kb

[
2x0(1 + η + y) + x2

0(−4− 4η + y)

+x3
0(2 + 2η − 4

3
y)

−2x0(1− η)2(1− x0)2

1 + η − y

]
. (65)

We have checked that this formula agrees with the
various particular cases presented in the literature. Thus,
[17] compute the longitudinal polarization asymmetry cor-
responding to an unpolarized decaying baryon and [9]
give the full results for various lepton polarizations from
the decay of polarized Λb baryons. The method presented
here has the advantage of performing the integration over
the neutrino phase space automatically. Unfortunately,
this aspect can prove to be also a limitation: because
of integrating over all possible neutrino momenta, all in-
formation about the decay plane is lost. Therefore this
method can only be applied for obtaining lepton polariza-
tion asymmetries averaged over the position of the decay
plane, i.e. after azimuthal averaging. The azimuthal av-
eraging does not affect the longitudinal polarization com-
ponent and thus our results can directly be compared to
corresponding results in the literature [9,17]. We have also
checked that we agree with [9] on the transverse polariza-
tion component in the plane spanned by the vectors pτ
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and P which can be obtained from [9] with the appropri-
ate azimuthal averaging. The transverse polarization com-
ponent normal to this plane averages out when doing the
azimuthal averaging. Our results for the transverse nor-
mal component of the τ -polarization have been presented
in Sect. IV.

6 Summary and conclusions

We have analyzed the inclusive semileptonic decays of po-
larized Λb baryons into polarized τ -leptons. We discussed
spin-spin, spin-momentum and momentum-momentum cor-
relations between the spins of the Λb and the τ , and the
momenta of the virtual W (or recoil momenta pX) and
the τ . Using helicity techniques we presented detailed re-
sults on the above angular correlations involving a three-
fold angular decay distribution in the three helicity angles
that can be defined for the process. By taking suitable
combinations of helicity structure functions we identified
observables that are directly proportional to the contri-
butions of the O(1/m2

b) nonperturbative matrix elements.
In the helicity method one determines the τ -polarization
in the (τ−, ντ ) rest frame. We give also results on the τ -
polarization in the Λb-rest frame using an elegant loop
calculation.
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Appendix A: q0-integrated structure functions

In this appendix we list the results of integrating the struc-
ture functions in (11) with respect to q0. Our results are
given in terms of the integrals

mb

∫ √
q̂2
0 − q̂2Wdq̂0 = I(W )

where W stands for any of the linear combinations of the
helicity structure functions in (11). One has

I(W++
++ +W++

−− +W−−
++ +W−−

−− )

= (1−Kb)p̂(−q̂2 + ρ+ 1)/2 + 4Kbp̂/3
+Gb(p̂2(15(q̂2 − ρ)− 11)

+q̂2(3q̂2 − 3ρ)− 7)− 4ρ+ 4))/(6p̂)
I(W++

++ +W++
−− −W−−

++ −W−−
−− )

= (1 + εb)p̂2 + 2Kb(−2p̂2 − q2)/3)
I(W++

00 +W−−
00 )

= (1−Kb)p̂(4p̂2 − q̂4 + q̂2ρ+ q̂2)/(4q̂2)− 4Kbp̂/3
+Gb

(
p̂2(15(−4p̂2 + q̂4 − q̂2ρ)− 59q̂2 − 12ρ+ 12)

+q̂2(q̂2(3(q̂2 − ρ)− 7)− 4ρ+ 4)
)
/(12p̂q̂2)

I(W++
00 −W−−

00 ) = (1 + εb)p̂2(ρ− 1)/(2q̂2)

+Kb(−2p̂2 − ρ+ 1)/3
I(W++

++ −W++
−− +W−−

++ −W−−
−− )

= −p̂2 + 2Kb(2p̂2 + q̂2)/3
+Gb(10p̂2 + 2q̂2 + 3ρ− 3)/3

I(W++
++ −W++

−− −W−−
++ +W−−

−− )

= (1 + εb)p̂(q̂2 − ρ− 1)/2
+Kbp̂(−3q̂2 + 3ρ− 5)/6

I(W+−
−0 +W+−

0+ ) = (1 + εb)p̂(q̂2 + ρ− 1)/(2
√

2
√
q̂2)

+Kbp̂(q̂2 − ρ+ 1)/(3
√

2
√
q̂2)

I(W+−
−0 −W+−

0+ ) = −(1 + εb)p̂2/(
√

2
√
q̂2)

+Kb(−p̂2 + 2q̂2)/(3
√

2
√
q̂2)

I(W++
tt +W−−

tt )
= (1−Kb)p̂(4p̂2 − q̂4 + q̂2ρ+ q̂2)/(4q̂2)
+Gb

(
p̂2(5(−4p̂2 + q̂4 − 5q̂2ρ)− 9q̂2 − 4ρ+ 4)

+q̂4(q̂2 − ρ− 1)
)
/(4p̂q̂2)

I(W++
tt −W−−

tt ) = (1 + εb)p̂2(ρ− 1)/(2q̂2)
+Kb(−2p̂2ρ+ 2p̂2 − q̂2ρ+ q̂2)/(3q̂2)

I(W++
0t +W−−

0t ) = p̂2(−ρ+ 1)/(2q̂2)

+Kb(2p̂2ρ− 2p̂2 + q̂2ρ− q̂2)/(3q̂2)
+Gb(10p̂2ρ− 2p̂2 + 5q̂2ρ− q̂2)/(6q̂2)

I(W++
0t −W−−

0t ) = (1 + εb)p̂(−4p̂2 + q̂4 − q̂2ρ− q̂2)/(4q̂2)

+Kbp̂(12p̂2 − 3q̂4 + 3q̂2ρ+ 11q̂2)/(12q̂2)

I(W+−
−t −W+−

t+ ) = (1 + εb)p̂(q̂2 + ρ− 1)/(2
√

2
√
q̂2)

+Kbp̂(−q̂2 + ρ− 1)/(3
√

2
√
q̂2)

I(W+−
−t +W+−

t+ ) = (1 + εb)(−p̂2)/(
√

2
√
q̂2)

+Kb(3p̂2 + 2q̂2)/(3
√

2
√
q̂2)

where p̂ = 1
2

√
(1− ρ+ q̂2)2 − 4q̂2. For the sake of com-

pleteness we have retained the contribution of the chromo-
magnetic interaction Gb contribution, although it vanishes
for Λb-decays. For applications of the helicity formalism to
the mesonic sector one has to set P = 0 in the rate for-
mulae and replace (W++

λWλ′
W

+W−−
λWλ′

W
) by WλWλ′

W
.

Appendix B: Fully integrated rate functions

In this Appendix we list our fully integrated results for
those structure function components that determine the
angular decay distribution for unpolarized Λb-decay, i.e.
for the helicity rates Γ̂−

U , Γ̂−
L , Γ̂−

F , Γ̂+
U , Γ̂+

L , Γ̂+
S and Γ̂+

SL.

Γ̂−
U = (1−Kb)

√
R

3
(1− 7η − 7η2 + η3 − 7ρ

+12ηρ− 7η2ρ− 7ρ2 − 7ηρ2 + ρ3)

+16Kb

√
R

9
(1− 5η − 2η2 + 10ρ− 5ηρ+ ρ2)

+(1−Kb)8

[
ρ2(η2 − 1) ln

(
1− η + ρ−√R

2
√
ρ

)
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+η2(ρ2 − 1) ln

(
1 + η − ρ−√R

2
√
η

)]

+Kb

[
64ρ
3

(1− 2η + η2 + ρ) ln

(
1− η + ρ−√R

2
√
ρ

)

+
64η2

3
(ρ− 1) ln

(
1 + η − ρ−√R

2
√
η

)]
(66)

Γ̂−
L = (1−Kb)

2
√
R

3
(1 + 10η + η2 − 7ρ

−10ηρ+ η2ρ− 7ρ2

+10ηρ2 + ρ3)

−Kb
16
√
R

9
(1− 5η − 2η2 + 10ρ− 5ηρ+ ρ2)

+(1−Kb)8ρ2(−2 + 3η − η2 − ηρ)

× ln

(
1− η + ρ−√R

2
√
ρ

)

+Kb
64ρ
3

(−1 + 2η − η2) ln

(
1− η + ρ−√R

2
√
ρ

)
+(1−Kb)8η(1− ρ)(1 + η − 2ρ+ ηρ+ ρ2)

× ln

(
1 + η − ρ−√R

2
√
η

)

+Kb
64η2

3
(1− ρ) ln

(
1 + η − ρ−√R

2
√
η

)
(67)

Γ̂−
F = (−1 + η + 2

√
ρ− ρ)(1− 7η − 7η2 + η3

+2
√
ρ− 12η

√
ρ− 2η2√ρ− 17ρ+ 38ηρ

−7η2ρ+ 28
√
ρ
3 − 12η

√
ρ
3

−17ρ2 − 7ηρ2 + 2
√
ρ
5 + ρ3)/3

+4η2(1− ρ)2 ln
(

η

(1−√ρ)2
)

+Kb

[
4
9
(1− η − 2

√
ρ+ ρ)(9− 23η

+η2 + η3 − 30
√
ρ+ 20η

√
ρ− 2η2√ρ

+31ρ+ 22ηρ− 7η2ρ− 4
√
ρ
3 − 12η

√
ρ
3

−9ρ2 − 7ηρ2 + 2
√
ρ
5 + ρ3)

−16η2

3
(1− ρ)2 ln

(
η

(1−√ρ)2
)]

(68)

Γ̂+
U = (1−Kb)

2η
√
R

3
(1 + 10η + η2 − 2ρ+ 10ηρ+ ρ2)

+Kb
8η
√
R

3
(1 + 5η + ρ)

+(1−Kb)
8η2ρ2

1− ρ
(−1 + η + ρ)

× ln

(
1− η + ρ−√R

2
√
ρ

)

+Kb
32ηρ

3(1− ρ)
(1− 2η + η2 − ρ+ 2ηρ)

× ln

(
1− η + ρ−√R

2
√
ρ

)

+(1−Kb)
8η2

1− ρ
(1− ρ− ρ2 + ρ3 + η + ηρ2)

× ln

(
1 + η − ρ−√R

2
√
η

)

+Kb
32η2

3(1− ρ)
(2 + η − 4ρ+ ηρ+ 2ρ2)

× ln

(
1 + η − ρ−√R

2
√
η

)
(69)

Γ̂+
L = (1−Kb)η

√
R(−3− 3η + 4ρ− 3ηρ− 3ρ2)

−Kb
8η
√
R

3
(1 + 5η + ρ)

+(1−Kb)
2ηρ2

1− ρ
(−3 + 4η − η2

+4ρ− 4ηρ− ρ2) ln

(
1− η + ρ−√R

2
√
ρ

)

+Kb
32ηρ

3(1− ρ)
(−1 + 2η − η2 + ρ− 2ηρ)

× ln

(
1− η + ρ−√R

2
√
ρ

)
+(1−Kb)2η(−4η(1− ρ2)

+
−1− η2 + 4ρ− 6ρ2 − η2ρ2 + 4ρ3 − ρ4

1− ρ
)

× ln

(
1 + η − ρ−√R

2
√
η

)

+Kb
32η2

3(1− ρ)
(−2− η + 4ρ− ηρ− 2ρ2)

× ln

(
1 + η − ρ−√R

2
√
η

)
(70)

Γ̂+
S = (1−Kb)

[
η
√
R(−3− 3η + 4ρ− 3ηρ− 3ρ2)

+2η(−4η(1− ρ2)

+
−1− η2 + 4ρ− 6ρ2 − η2ρ2 + 4ρ3 − ρ4

1− ρ
)

× ln

(
1 + η − ρ−√R

2
√
η

)

− 2ηρ2

1− ρ
(3− 4η + η2 − 4ρ+ 4ηρ+ ρ2)

× ln

(
1− η + ρ−√R

2
√
ρ

)]
(71)

Γ̂+
SL = η

1 +
√
ρ√

ρ− 1
(1− η − 2

√
ρ+ ρ)
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×(3 + 3η − 2
√
ρ− 4η

√
ρ− 2ρ

+3ηρ− 2
√
ρ
3 + 3ρ2)

−η(1 + 4η + η2 − 3ρ− η2ρ+ 3ρ2 − 4ηρ2 − ρ3)

× ln
(

η

(1−√ρ)2
)

+Kb

[
4η
3

(1 +
√
ρ)(−1 + η + 2

√
ρ− ρ)

×(−1− η − 3
√
ρ+ 3η

√
ρ+ ρ+ 3

√
ρ
3)

+
4η
3

(ρ− 1)(−1− η2 + 2ρ− 4ηρ− ρ2)

× ln
(

η

(1−√ρ)2
)]

(72)

where R is related to the maximal momentum of the τ in
the Λb rest frame and is given by

R = 1− 2η + η2 − 2ρ− 2ηρ+ ρ2

As a necessary check we reproduce the total rate formula
[6–9]:

Γ = Γb

(
Γ̂−
U + Γ̂+

U + Γ̂−
L + Γ̂+

L + 3Γ̂+
S

)
= Γb (1−Kb)

[√
R(1− 7η

−7η2 + η3 − 7ρ+ 12ηρ− 7η2ρ− 7ρ2 − 7ηρ2 + ρ3)

+24η2(ρ2 − 1) ln

(
1 + η − ρ−√R

2
√
η

)

+24ρ2(η2 − 1) ln

(
1− η + ρ−√R

2
√
ρ

)]
(73)

We mention that we have double checked all our analytic
results by comparing them to a numerical evaluation.
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